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Abstract

The growing number of space missions has led to the application of the concept of hopping robots for au-
tonomous locomotion in planetary and small-body environments. The strong jumping ability of this type of robots
allow them to move in such complex environments with high efficiency.

The main challenge to this concept has been related to impacts with the ground. To solve this issue, this thesis
explores the application of a Double Gimbal Variable Speed Control Moment Gyroscope to control the attitude
of a hopping robot during a ballistic flight. During flight, this actuator must be able to guarantee an attitude and
angular velocity of the robot such that, when the robot hits the ground, it has a safe position. Additionally, in flight,
the robot must be able to perform observation maneuvers that require the robot to achieve a certain attitude with
zero angular velocity.

To achieve these objectives, this thesis presents the system equations of motion. Then, a broad study of
the controllability is performed. Finally, three control architectures are designed and tested. Among these a
strategy using Trajectory Optimization is constructed and applied. The final proposed controller is a closed-loop
controller following these optimized trajectories, combining efficiency with robustness. The results are presented
and compared with the previous solutions reviling an advantage in the use of this architecture.
Keywords: hopping robots, attitude control, Double Gimbal Variable Speed Control moment gyroscope,
trajectory optimization

1. Introduction

With the recent trend toward more frequent space
missions to Mars and other celestial bodies such as
moons asteroids and comets [3], the field of hopping
robotics achieved a new application. These celestial
bodies are usually characterized by a low to medium
gravitational environment and unstructured terrain. For
exploration in such complex scenarios, an interest in
multi-functional vehicles, capable of providing high mo-
bility for scientific packages has sparked the interest of
the space exploration community in this field [3].

According to [7], for the design of a hopping robot,
the jumping process is divided into three stages: take-
off, air posture adjustment, and landing. This segmen-
tation of the process is useful for control and actuation
purposes. By separating into three stages the control
can be applied separated from each phase.

The takeoff stage starts when the robot is in equilib-
rium on the ground and ends when the foot takes off
the ground towards the air [7]. It is during this phase
that occurs the conversion of potential energy(stored
in the actuator) into kinetic energy. Regarding the take
off mechanism, hoppin robots can be described as [7]:
reaction-propulsion drive (propelled as result of chem-
ical reaction), pneumatic drive (the hop results from
the contraction of series of pneumatic structures to ac-

complish), spring drive (vertical hopping motions are
achieved by the release of a spring system) and flex-
ible material drive (take off mechanism takes advan-
tage of elastic properties of certain materials such as
fiberglass or shape memory alloy).

The second stage of the cycle corresponds to the
air posture adjustment during the flight phase. In this
phase, the robot adjusts its orientation relative to the
ground in order to achieve a safe landing. Some
bio inspired robots make use of wings and artificial
tails. Other robots use attitude actuator mechanisms
originally designed for spacecraft such as reaction-
propulsive systems or momentum exchange devices.
Simpler robots even present no attitude actuation and
achieve a desired position after landing and by means
of its external structure.

Finally, there is the landing stage. This phase starts
when the robot touches the ground and finishes when
it reaches a static equilibrium. This phase is important
for protecting the structure from the rigid collision with
the ground. For some robots it is achieved by a real-
time anticipatory control over the take off actuators that
receive the first impact with the ground. When this is
not possible, usually the focus is on the development
of an independent buffering mechanism.
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1.1. Moonhopper

The Moonhopper is a spring drive hopping robot with
a Double Gimbal Variable Speed Control Moment Gy-
roscope (DGVSCMG) as a air posture actuator and
with no landing buffer. Figure 1 presents an image
of the Moonhopper. Dividing into four parts, the robot
is composed by: DGVSCMG (the attitude control ac-
tuator); Robot body (support for the DGVSCMG, for
the electric components,the batteries and the motor
responsible for taking off); Robot legs (geared six-
bar spring/linkage system responsible for take off) and
Robot foot (circle shaped it supports all the other com-
ponents).

In order to perform a jump, first, the robot contracts
its legs by means of a wire that connects the robot
body with the foot. By using a system of gears con-
nected to a rotor, the wire is retracted and the legs
are compressed. As a consequence the springs are
extended, storing the potential energy for the jump.
When the legs are fully compressed (and the springs
fully extended), a fixed gear locks the releasing mech-
anism. To jump, this locking mechanism is released
and the springs contract. This extension of the legs
creates a force on the ground that is responsible for
inducting an initial velocity to the robot ballistic trajec-
tory.

Figure 1: The Moonhopper. Extended and compressed configura-
tion

The robot lacks a take off direction mechanism and
a self righting mechanism, features commonly found
in hopping robots designed for extraterrestrial explo-
ration. For this reason, the prototype can only accom-
plish vertical jumps.

1.2. Related Work

The design of the Moonhopper was inspired by the
work of J. Burdick and P. Fiorini in their works [3]
and [6]. In [3], the authors present three gener-
ation designs for hooping robots projected for lu-
nar exploration. The Moonhoper structure and take
off mechanism is closely related to the second gen-
eration robot presented in [3]. More precisely,
the six bar spring/linkage structure is copied from
this second generation. The mechanism presents
force/displacement profile (see [3]) that reduces the
likelihood of premature lift-off due to the shocks in-
herent in initial spring release. Additionally, the motor
peak design torque is lowered as compared with a lin-

ear spring leg robot. These features are the reason for
the high efficiency (η) of the second generation.

Regarding the attitude actuation mechanism, the
DGVSCMG choice as a momentum exchange device
results from the work presented in [6]. In this article,
the proposed actuation consists of two reaction wheels
aligned with the y and z axes of the body. These ac-
tuators are supposed to provide the system with full
attitude control in the case of no initial angular velocity.
When the ballistic trajectory starts with initial angular
velocity it is possible only to achieve control over the
direction of the axis that is perpendicular to the axes
of the two reaction wheels.

Instead of using reaction wheel, this research intro-
duces the DGVSCMG as air posture actuator. This
device consists of a spinning wheel with its axis con-
trolled by two gimbals. In addition, the velocity of
this wheel can be controlled. In general, a sin-
gle DGVSCMG is considered as a method for three-
dimensional attitude control as it is able to introduce
torques in three directions.

In this work, the attitude dynamics of the Moon-
hopper are developed and presented in a state space
formulation. Using a model of the Moonhopper de-
veloped in Gazebo/ROS, the results from the simu-
lation of the state space model are compared with
the Gazebo model for validation. With the descrip-
tion of the attitude dynamics, two attitude controllers
are adapted from spacecraft attitude control and ap-
plied to the robot model. In addition, a Trajectory Op-
timization formulation is constructed. The goal is to
obtain optimized attitude trajectories to be followed by
the system and compare the results with a classical
approach. The final controller is expected to combine
these two strategies: trajectory optimization for trajec-
tory planning and a closed loop system that follows the
trajectories.

2. State Space System
The model developed in this research is a modifica-
tion of the model developed in [5] of the attitude of an
DGVSCMG actuated satellite. The difference is found
in the position and configuration of the DGVSCMG. In
this configuration, this device is placed away from the
robot center of mass (CoM). Also, the wheel is placed
off centered from the gimbals axes (see Figure 1).

The description of the dynamics uses a specific no-
tation that requires description. In Figure 2 a represen-
tation of the top view of the DGVSCMG is presented.
Frame F defines the orientation of the DGVSCMG in
the robot body but stays fixed with respect to the body.
In figure 2, f̂1, f̂2, and f̂3 are the orthogonal unit vec-
tors of frame F. Frame G stays fixed with the outer
gimbal and rotates with respect to frame F an angle
ψ along axis f̂1. Frame G s defined by the orthogonal
vectors ĝ1, ĝ2, and ĝ3. Finally, frame H stays fixed with
the inner gimbal and rotates with respect to frame G
an angle θ along axis ĝ2. Using [FG] as the rotation
matrix of frame G with respect to frame F, this matrix is
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Figure 2: Representation of the DGVSCMG (top view)

defined as the cosine matrix of the rotation of ψ on axis
f̂1. [GH], following the notation, is the cosine matrix of
the rotation of θ on axis ĝ2.

The rotation of each frame with respect to the in-
ertial frame defined outside the robot (frame N), can
be written in terms of the unit vectors f̂1, ĝ2, ĥ3 and
the angular rates ψ̇, θ̇ and Ω: ωF/N = ω; ωG/N =

ω + ωG/F = ω + ψ̇f̂1; ωH/N = ω + ψ̇f̂1 + θ̇ĝ2 and
ωW/N = ω + ψ̇f̂1 + θ̇ĝ2 + Ωĥ3.

These relations are used to solve for the time deriva-
tive of the angular momentum Hi of each robot/device
component i (robot body LBS, the G and H structure
frames, and the spinning wheel W). Each component
angular momentum is defined using the formula for an
off centered rotation of a rigid body, equation (1).

Hi = [Ii]ωi/N + r ×mi.vi/CoM

= [Ii]ωi/N −mir̃ir̃iωi/CoM
(1)

From (1), the Euler’s rotational EOM can be applied
to the combined angular momentum H = HLBS +
HG +HH +HW . For the Moonhopper body, the angu-
lar momentum time derivative (in reference N) is given
by the expression

HLBS =F [ILBS ]ω

ḢLBS =F [ILBS ]ω̇ + ω ×
(
F [ILBS ]ω

) (2)

Matrix F [ILBS ] corresponds to the combined inertia
of the legs, foot and robot body. For the other com-
ponents, the derivation requires some more attention.
For G structure frame (outer gimbal),

HG = HGc +HGoff

=F [IG](ω + ψ̇f̂1)−mGr̃Gr̃Gω
(3)

ḢGc =
Gd
dt

(
F [IG]ωG/N

)
+ ωG/N ×

(
F [IG]ωG/N

)
=F [IG]

(
Gd
dt

(
ω + ψ̇f̂1

))
+ ωG/N ×

(
F [IG]ωG/N

)
=F [IG]

(
ω̇ + ψ̈f̂1 + ω ×

(
ψ̇f̂1

))
ωG/N ×

(
F [IG]ωG/N

)
(4)

By several iterations of the transport theorem
F d(Av)/dt =A d(Av)/dt + ωA/F ×A v it is possible to
remove [IG] from the derivative in the second line be-
cause it is constant in frame G.

ḢGoff
= N d

dt
(−mGr̃Gr̃Gω)

= −mGr̃Gr̃Gω̇ + ω × (−mGr̃Gr̃Gω)
(5)

The result forHH =F [IH ](ω+ψ̇f̂1+θ̇ĝ2)−mH r̃H r̃Hω
follows the same procedure as for HG.

ḢH =F [IH ]
(
ω̇ + ψ̈f̂1 + θ̈ĝ2 + ω ×

(
ψ̇f̂1 + θ̇ĝ2

)
+
(
ψ̇f̂1

)
×
(
θ̂ĝ2

))
+ ωH/N ×

(
F [IH ]ωH/N

)
−mH r̃H r̃H ω̇ + ω × (−mH r̃H r̃Hω)

(6)
For the reaction wheel HW , the procedure is slightly

different. The velocity of the wheel CoM depends
on the rotation of the body and the rotation of the
two gimbal axes. Which results in the expression:
HW = HWc

+ HWoff
with HWc

= F [IW ]ωW/N =
F [IW ]

(
ω + ψ̇f̂1 + θ̇ĝ2 + Ωĥ3

)
and HWoff

= rW ×

(mW (ψ̇f̂1 + θ̇ĝ2)×rW/H)+rW ×(mWω×rW ). rW/H =
[FH][0 0 rw2 ]T is the displacement vector of the wheel
CoM with respect to the gimbals CoM. Applying the
procedures described above for the HW

ḢWc
=F [IW ]

(
ω̇ + ψ̈f̂1 + θ̈ĝ2 + Ω̇ĥ3 + ω ×

(
ψ̇f̂1 + θ̇ĝ2

+Ωĥ3

)
+
(
ψ̇f̂1

)
×
(
θ̇ĝ2 + Ωĥ3

)
+
(
θ̇ĝ2

)
×
(

Ωĥ3

))
+ ωW/N ×

(
F [IW ]ωW/N

)
(7)

ḢWoff
= DF

r ×
(
mW

(
ψ̇f̂1 + θ̇ĝ2

)
× rW/H + ω × rW

)
+ rW ×

(
mW

(
ψ̈f̂1 + θ̈ĝ2 + ωG/F ×

(
θ̇ĝ2

))
× rW/H

+mwω̇ × rw +mw

(
ψ̇f̂1 + θ̇ĝ2 + ω

)
×DF

r

)
+ ω ×

(
rW × (mW (ψ̇f̂1 + θ̇ĝ2)× rW/H)

+rW × (mWω × rW ))
(8)

WhereDF
r is the time derivative of rw in frame F. The

objective from this point is to obtain an expression for
ω̇. Introducing the modified angular momentum deriva-
tives Ḣ ′i = Ḣi − [Ii]ω̇ − (−mir̃ir̃iω̇ − ω × (mir̃ir̃iω))
and combined moments of inertia [Istat] =F [ILBS ] −
mGr̃g r̃g−mhr̃hr̃h−mw r̃w r̃w and [I] = [Istat]+

F [IG]+
F [IH ] + F [IW ]. The expression of ω̇ is given by

ω̇ = [I]−1
(
−ω × [Istat]ω − Ḣ ′G − Ḣ ′H − Ḣ ′W

)
(9)
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Since the DGVSCMG is commanded by torques, an
additional relation regarding the inputs and the states
of the system must be added. The goal of this second
derivation is to obtain an equation of ψ̈, θ̈ and Ω̇ as
function of the states and input torques. For this pur-
pose, the relations between the time derivatives of the
angular momentum of the parts of the CMG and the
respective input torques are introduced. Following [5]
the relation is given by

[HF ] F
(
ḢWc

)
=

 ∼∼
uW

 (10)

[GF ] F
(
ḢWc

+ ḢWoff2/H
+ ḢHc

)
=

 ∼uH
∼



F
(
ḢWc

+ ḢWoff1/H
+ ḢWoff2/H

+ ḢHc
+ ḢGc

)
=

uG∼
∼


From here it is possible to organize the previ-

ous equation and obtain an expression in the form
M [ψ̈, θ̈, Ω̇]T + B = [uG, uH , uW ]T . Inverting this ex-
pression will give the desired dynamics.

The state space formulation comprises the variables
q, ω, ψ, θ, Ω, ψ̇ and θ̇. The attitude kinematics are
described using the quaternions formulation. The ex-
pression for the quaternion time derivative is given by
equation (11)

q̇ =
1

2


qw −qz qy
qz qw −qx
−qy qx qw
−qx −qy −qz

ω (11)

3. Controllability

In this section, a broad study over the controllability
and singularities is provided. The objective is to prove
if given an initial state, the system is able to reach
any desired attitude with a specific angular velocity
(SO(3)× R3), as it is done in [2].

Using the system described in the previous section
and study its controllability characteristics requires nu-
merical approximation and several assumptions as it
is done in [5]. Instead, in this derivation, the system
that is used is a simplified version. Assuming H ≈
Hstat +HCMG, where Hstat = F [Istat]ω and HCMG =

IwzzΩ
[
sin(θ) −sin(ψ)cos(θ) cos(θ)cos(ψ)

]T .
Applying the time derivative to the expression results

in: [Istat]ω̇+ ḢCMG + ω× ([Istat]ω+HCMG) = 0. The
expression of ḢCMG is obtained using the procedure
followed earlier for the complete system. The result is
given by

ḢCMG =
F d

dt

(
Iwzz

Ωĥ3

)
=

Hd

dt

(
Iwzz

Ωĥ3

)
+ ωH/F ×

(
IwzzΩĥ3

)
=

 0 IwzzΩcθ Iwzzsθ
−Iwzz

Ωcθcψ Iwzz
Ωsθsψ −Iwzz

sψcθ
−Iwzz

Ωcθsψ −Iwzz
Ωsθcψ Iwzz

cθcψ

ψ̇θ̇
Ω̇


(12)

Describing the attitude kinematics using a matrix
R ∈ SO(3) that represents the attitude of the the body
with respect to a reference inertial frame, the kinemat-
ics are described by the equation Ṙ(t) = R(t)S(ω(t)),
where ω is the instantaneous body-frame components
of the angular velocity of the body ω ∈ R3 and S()
represents the cross product operation. As stated in
[2], on the sub manifold with constant angular momen-
tum MH the attitude kinematics equation can be writ-
ten in terms of the conservation of angular momentum
(RTH = Istatω +Hcmg(ψ, θ,Ω)) as

Ṙ(t) = R(t)S(I−1stat{RT (t)H −Hcmg(ψ, θ,Ω)}) (13)

Since (13) combines the kinematics and dynamics
equation of (12), the system is fully defined on MH

by including ψ̇ = u1, θ̇ = u2, Ω̇ = u3 to equation
(13). The resulting equation define a control afine sys-
tem of the form: ẏ(t) = fH(y(t)) + g1(y(t))u1(t) +
g2(y(t))u2(t) + g3(y(t))u3(t). These dynamics are de-
fined on the manifold N, where y = (R,ψ, θ,Ω) ∈ N
represents the body attitude and the DGVSCMG con-
figuration. In this system

fH(R,ψ, θ,Ω) =
(
RS(I−1stat{RTH −Hcmg(ψ, θ,Ω)}), 0

)
g1(R,ψ, θ,Ω) = (0, e1)

g2(R,ψ, θ,Ω) = (0, e2)

g3(R,ψ, θ,Ω) = (0, e3)
(14)

where ei ∈ R3 is a vector whose i-th element is 1
and the remaining 0. The resulting system is relatively
similar to the one from [2] regarding a spacecraft con-
trolled by three single gimbal control moment gyros. In
order to prove the controllability of system (14) on the
respective manifold, two results must be proven: (1)
the vector field fH is weakly positively Poisson stable
on N; (2) the system (14) is strongly accessible and
controllable on N

For the first result, the proof presented in [2] can
be directly applied to this case as it does not depend
on the function v(θ), in this case Hcmg(ψ, θ,Ω). For
the second result, the result still applies, but is rather
different. Let H ∈ R3. Let ξ11 = [g1, fH ], ξ12 = [g1, ξ1]
and ξ13 = [ξ1, ξ2] be defined as the Lie Brackets and
treating fH and gi as vector fields on R3x3×R3. Using
the expression for the Lie Brackets
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d

dh
|h=0

[
f̂H((R,ψ, θ,Ω) + hg1(R,ψ, θ,Ω))

−ĝ1((R,ψ, θ,Ω) + hfH(R,ψ, θ,Ω))]
(15)

of [2]s, the resulting expression of ξ11, ξ12 and ξ13 is
given by

ξ11 = −
(
R(t)S(I−1stat∂Hcmg/∂ψ(ψ, θ,Ω)), 0, 0, 0

)
ξ12 =

(
R(t)S(I−1stat∂

2Hcmg/∂ψ
2(ψ, θ,Ω)), 0, 0, 0

)
ξ13 =

(
RS(I−1stat∂

2Hcmg/∂ψ
2(ψ, θ,Ω)×

I−1stat∂Hcmg/∂ψ(ψ, θ,Ω)), 0, 0, 0
) (16)

An analogous result can be obtained for the Lie
Brackets regarding g2 with the partial derivative with
respect to θ instead of ψ. In this case only ξ13 is de-
fined as ξ13 = [g3, fH ] since ξ23 = 0 and ξ33 = 0. ξ13
follows the same structure as for ξ11.

As in [2], ξi1 and ξi2 are linearly independent as the
vectors ∂Hcmg/∂ψ and ∂2Hcmg/∂ψ

2 are perpendicu-
lar. ξi3 is linearly independent as it is also perpendicu-
lar to the others. All Lie Brackets and functions gi are
linear independent between each other and contained
in the strong accessibility algebra [2]. As result, the
system (14) is strongly accessible. Strong accessibility
implies accessibility, and assuming the weak positive
Poisson stability of (14), the system is controllable in
MH following [2].

The result shows that system can be steered be-
tween any two states lying on the same constant an-
gular momentum sub manifold by using suitable gim-
bal motions.

3.1. Singularities
This situation is well presented when working with dou-
ble gimbal control moment gyros. It occurs when the
outer gimbal axis is collinear with the reaction wheel
axis [5]. In this case, an acceleration in the wheel pro-
duces the same effect as the acceleration in the outer
gimbal axis, leading to a lost of one degree of freedom.
When θ equals π

2 or −π2 , matrix (12) degenerates and
looses one rank, resulting in0 0 Iwzz

0 Iwzz
Ωsin(ψ) 0

0 −IwzzΩcos(ψ) 0


Finally, it is important to mentioned that the control-

lability of the system is not compromised. In [2],the
authors prove that, for a system like this, the control-
lability in MH exists despite the existence of singulari-
ties.

4. Controller
Using the system dynamics described in section 2,
the goal is to control the attitude of the DGVSCMG
actuated hopping robot. Experiments performed with
the Moonhopper show that on the moon’s surface, the

robot is expected to jump and reach a maximum height
of 5.69m during a time interval of 5.3s. During this time
the robot must be able to achieve one of two objec-
tives: (1) from an initial state (orientation and angular
velocity), achieve a landing position (defined later); (2)
from an initial state, achieve a desired orientation (with
0 angular velocity) during 1 second, at the maximum
height, and then return to a landing position.

In order to achieve these objectives three strategies
were approached: (1) a classical attitude hold as a PD
+ Dynamic inversion; (2) an open loop system con-
trolled by an input set obtained from a Trajectory Opti-
mization method; (3) a nonlinear control analysis of a
DGVSCMG.

The classical attitude hold approach is divided into
two steps. The first step is to compute the required
torque to be produced by the actuator to follow a spe-
cific trajectory. The time derivative of the angular mo-
mentum is divided into ḢLBS + ḢCMG = 0 ⇐⇒
ḢLBS = −ḢCMG. This can be read as: the torque
to be applied to the robot to perform the maneuver
is equal to the torque produced by the actuator. To
compute the required torque a PD controller is used:
ḢCMG = KP eq + KDeω, where eq corresponds to the
vector part of the error quaternion and eω = ωd − ω.
The second step is to write the equation for ḢCMG =
ḢG + ḢH + ḢW in order to have an expression in the
form of ḢCMG = MḢCMG

[
ψ̈ θ̈ Ω̇

]T
+ BḢCMG

. In-
verting the expression gives the requires values for ψ̈,
θ̈ and Ω̇. To compute the input torques, the procedure
follows the relations in 10.

The trajectory optimization planned controller,
makes use of input sets computed following a trajec-
tory optimization method to be applied directly to the
open loop system described in section 2. Trajectory
Optimization methods are explored in the next section.

The nonlinear control analysis of a DGVSCMG
is presented in [5]. Defining a Lyapunov function
for the control dynamics V (δω, σ) = 1

2δω
T [I] δω +

2K ln
(
1 + σTσ

)
the authors state the conditions in

which this function is valid:

−[I]ω̇ − 1

2

B d

dt
[I]δω = Kσ + [P ]δω − [I] (ω̇r − ω × ωr)

(17)
this control law follows the nomenclature presented
with the exception of σ, the modified rodrigues param-
eters (MRPs) of the current orientation relative to the
desired orientation, and δω = ωr − ω. K and [P ] are
the gains.

The Lyapunov control law, departs this relation
which is a function of the reference trajectory, the
states and the inputs (for this case ψ̈, θ̈ and Ω̇) and
establishes conditions of validity. The conditions of va-
lidity in this case are stability constraints that, when
solved result in input signals. Solving the stability con-
straint of 17 as in [5] and adapted to the system in 2,
the result requires to solve an nonlinear matrix equa-
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tion that cannot be solved analytically for the input vec-
tor. Instead, a Newton–Raphson (N–R) iteration is
used to find the root of the relation (see [5]).

5. Trajectory Optimization
The term trajectory optimization refers to a set of meth-
ods that are used to find the best choice of trajectory,
typically by selecting the inputs to the system, known
as controls, as functions of time [4]. A trajectory op-
timization problem seeks to find the a trajectory for
some dynamical system that satisfies some set of con-
straints while minimizing some cost functional. In order
to construct a trajectory optimization problem it is re-
quired to specify: the system dynamics, boundary con-
ditions (state, input and time), (nonlinear) constraints
(state and input) and a cost functional. The trajectory
optimization problem is then set as

min
u(t)

J(x0, u0, t0, xF , uF , tF ) +

∫ T

0

w(x, u, t)dτ (18)

V ariables = {x(t), u(t)}
Dynamics : ẋ = f(x, u)

Constraints : gmin ≤ g(t, x, u) ≤ gmax
Boundaries :

Ψ(t0, x0, u0) = Ψ0

ΨFmin ≤ Ψ(tF , xF , uF ) ≤ ΨFmax

where x is the state vector and u is the input vector.
Solving the trajectory optimization problem can be

accomplished by two types of methods: indirect or di-
rect methods. Indirect methods analytically construct
the necessary and sufficient conditions for optimality
then discretize these conditions and solve them nu-
merically [1]. Direct methods discretize the trajec-
tory optimization problem itself, typically converting
the original trajectory optimization problem into a non-
linear program. In general, direct methods are much
easier to set up and solve. At the same time, they
do not have a built-in accuracy metric and are less
accurate since the solution can include discretization
errors[1]. For these reasons, in this work, only direct
methods are applied.

The direct method that is used is the trapezoidal
direct collocation method. First, the trajectory is dis-
cretized in a finite number of points (Ngrid) that rep-
resent a finite number of decision variables. At each
point, a collocation constraint is imposed that relates
the previous and the next points. This collocation con-
straint imposes the system dynamics to the result-
ing optimization problem. It follows from

∫ tk+1

tk
ẋdt =∫ tk+1

tk
f(x, u)dt −→ xk+1 − xk ≈ 1

2 (hk)(f(xk+1, uk+1) +

f(xk, uk))). This is called the trapezoid rule for inte-
gration where hk = tk+1 − tk and k = 1, 2...Ngrid − 1.
The trapezoidal rule is also used to discretize the cost
function. The constraints and boundaries are imposed
in the respective points.

The result of the transcription in a trapezoidal direct
collocation method is a nonlinear optimization prob-
lem with: a discretized cost function (trapezoidal rule),
nx × (Ngrid − 1) + nu × (Ngrid − 1) decision variables
(corresponding to the discretization of the trajectory,
nx size of the state vector and nu size of the input vec-
tor); each point subject to collocation, state and input
constrains; and boundary constraints.

5.1. Boundaries and Constraints - Moonhopper
For the Moonhopper system it is required to define
some state constraints that represent part of its dy-
namics. Regarding the time of jumping it was seen
that it is equal to 5.3s. In this case, a 5s final bound-
ary is imposed. Regarding state variables, the values
for ψ, θ, ψ̇ and θ̇ are constrained. According to the
data sheet, −π/2 < ψ < π/2, −π/2 < θ < π/2,
−10 < ψ̇ < 10, −8.7 < θ̇ < 8.7. The gimbal inputs
must lie inside the range −0.2 < uψ,θ < 0.2.

Initial and final boundaries are determined by the ini-
tial and desired states, respectively. These are defined
for each maneuver individually.

Finally, the cost function used corresponds to∫ tF
t0

(
ψ̈2 + θ̈2 + Ω̈2

)
dτ . This was chosen as it reached

the results faster and enforced the solution to have a
smooth behaviour leading to less oscillations while pe-
nalizing high energy cost trajectories.

6. Results & discussion
In this section, the results of the experiments per-
formed are presented. The first result corresponds to
the model validation. For validating the model, a sim-
ulation of the model is run in a 3D robotics simulator
framework ROS/Gazebo. Then, results are compared
with the simulation of the state space dynamics de-
scribed in section 2 and run in Matlab’s ode45 solver.
The second part of the results comprise a comparison
of two control systems described earlier: the classic
attitude controller and the open loop trajectory opti-
mization based controller. For comparing these trajec-
tories, an observation maneuver was designed. Upon
take off the robot departs with an attitude of [0, 0, 0]
(roll, pitch and yaw) and an arbitrary initial angular ve-
locity caused by disturbance torques. Before reaching
the highest point of its trajectory, the robot must be
able to achieve an orientation that enables an obser-
vation over the target area. Using an attitude hold con-
troller, the actuators hold this orientation during one
second (enough time to perform measurements and
collect images), while the robot reaches the highest
point and starts the downward trajectory. During this fi-
nal phase, the system must be able to achieve a safety
attitude described by safety conditions.

6.1. Model Verification
In general, a ROS/Gazebo model is defined by a set
of links and joints commanded by transmissions. In
addition, a series of plugins can be included to per-
form measurements as sensors, or vision capabilities
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as cameras. A model of the robot Moonhopper was
defined using information regarding the inertia of the
prototype and motion of the different parts of the robot
structure (specified as joints). Several tests were per-
formed, each with the goal to represent a character-
istic of the system and highlight actuation properties.
However, due to limited space, only a test that involve
the three inputs uG, uH and uW is performed. The ma-
neuver starts with an acceleration of the wheel caused
by a step in uW . When t = 5s the input signals for uG
and uH are started. Figures (3-7) present the results
for the designed test. The signals presented in the
color red correspond to the state space model simu-
lated in Matlab. The color blue is used to represent the
results from the ROS/Gazebo model.

Figure 3: Outer gimbal-Inner gimbal step - Orientation in Euler An-
gles. The red line represents values of the orientation output from
the state space model. The blue line represents values from simu-
lation. The same applies for Figures (3-6)

Figure 4: Outer gimbal-Inner gimbal step - Orientation in Euler An-
gles.

6.1.1 Discussion

As a result of these experiments it is possible to ob-
serve that, in general, the outputs of the model match
the simulation outputs. In fact, it is seen that the errors
are quite small for most of the cases and intuitively,
both systems (Gazebo and State Space) behave like
what is expected.

It is seen that for the ψroll and θpitch angle signals

Figure 5: Outer gimbal-Inner gimbal step - Orientation in Euler An-
gles.

Figure 6: Outer gimbal-Inner gimbal step - Joint angular velocity

Figure 7: Input torque signals - Gimbal torque inputs uG and uH in
Nm (left) and wheel torque input uW in Nm (right)

(Figure 3), the error between the two models increases
after t = 15s. However, the shape of the signal re-
mains similar although offset by a fixed error. In fact, it
was seen that these errors correspond to the gazebo
model. Since this robot is relatively small when com-
pared to the robots usually simulated in Gazebo, this
framework results present errors due to simplifications
and truncation. For larger robots (larger inertia) these
errors are not as common. Additionally, it is important
to mention that both models were forced to have fric-
tion introduced to the joints as the framework was not
expected to perform well with ideal joints (no friction).
By increasing the friction coefficient in joints, the error
between both models decreased.

In conclusion, the results prove the validation of the
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state model described in section 2.

6.2. Moonhopper Attitude Control

The maneuver here presented starts with initial atti-
tude of [0, 0, 0, 1] (qx, qy, qz and qw). When t = 2s,
the robot must reach an orientation of φrollr = −55o,
θpitchr

= 40o and ψyawr
= 40o and remain with this ori-

entation for one second. Finally, when t = 3s it starts
the attitude regain, achieving a safe attitude and angu-
lar velocity for landing, before t = 5s. This safe landing
state is defined by an attitude between −3o and 3o in
the angles of roll and pitch (aligned with n̂1 and n̂2 ac-
cording to Figure 2) and an angular velocity ω between
−0.02 rad s−1 and 0.02 rad s−1.

6.2.1 Classical attitude control

The first controller to be implemented is the classical
attitude approach. A trajectory connecting the attitude
goals is first designed. Then, the controller is used to
obtain the inputs to follow the trajectory. The result is
presented in terms of the states (ω, ψ, θ, Ω, ψ̇, θ̇) and
the inputs in the form of ψ̈, θ̈ and Ω̇ and in the form of
uG, uH and uW . Although the dynamics are used in q,
the Euler angles representation is here presented for
a more intuitive understanding of the results. Figures
8 to 11 present the trajectory

Figure 8: Observation test: Classic attitude controller - Attitude and
angular velocity

Figure 9: Observation test: Classic attitude controller - Gimbal Axes
and Wheel velocity

Figure 10: Observation test: Classic attitude controller - Gimbal
inputs

Figure 11: Observation test: Classic attitude controller - Wheel in-
puts

6.2.2 Trajectory optimization based control

In order to apply trajectory optimization to the obser-
vation maneuver, the 5s observation trajectory is par-
titioned in three sub trajectories defined by an initial
state and an objective state. The first sub trajectory
lasts 2s, starts with the robots initial trajectory and fin-
ishes when the robot reaches the desired attitude for
observation. The second sub trajectory corresponds
to a 1 second attitude hold and is carried out by an
attitude holder controller. When t = 3s, the last sub
trajectory follows the same as for the classic controller.
Only the first and the last sub trajectories are subjected
to trajectory optimization, as the second is carried out
by a developed controller.

The first objective sub trajectory has the initial state
boundary q0 = [0, 0, 0, 1] and ω0 = [0, 0, 0] and the final
state boundary qF = [−0.340, 0.439, 0.118, 0.823] (cor-
responding to the attitude objective) and ωF = [0, 0, 0].
The last sub trajectory has the initial state boundary
corresponding to the state at t = 3s and the final
boundary state qF = [0, 0, 0, 1]. The remaining bound-
aries are presented in section 5. The trajectory opti-
mization problem was introduced in the solver Optim-
Traj [4] and the outputs are presented in Figures 12 to
17.

6.2.3 Discussion

The first observation to be mentioned is the accom-
plishment of all objectives both for the attitude control
and trajectory optimization controller. In fact, the de-
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Figure 12: Observation test: Trajectory optimization controller - At-
titude and angular velocity

Figure 13: Observation test:Trajectory optimization controller - Gim-
bal Axes and Wheel velocity

Figure 14: Observation test: Trajectory optimization - Gimbal inputs

sired attitude is achieved and hold with a small angu-
lar velocity, almost zero. These conditions are ideal
for capturing images. Regarding the gimbal axes it
is clear the impact they have on the attitude control.
However, this is done at a high cost in terms of ve-
locity of the gimbal axes which are translated in high
amplitude signals over a short period of time. This
is more clear for the transition that occurs at t = 2s.
Nevertheless, in general, the gimbal angular veloc-

Figure 15: Observation test: Trajectory optimization - Wheel inputs

ity remains inside the available range. The other no-
table observation is the extremely high gimbal accel-
erations, specially during the attitude hold phase. The
reason for that is related to the small inertia matrices
of the gimbals. Inverting these inertia matrices leads
to high acceleration inputs which causes this type of
behaviour. Although gimbal accelerations values are
quite high, the input torque are actually small in com-
parison, reaching values between -0.4 and 0.2 N.m
for the worse case scenario. For the trajectory opti-
mization maneuvers, the wheel speed is considerably
smaller than the same for the classic approach con-
troller. In addition, the curves of Ω̇ are considerably
different. This results in a relaxed maneuver, where
only the focus is to achieve the desired state. This re-
sults in less rigid control over the ψyaw angle. The re-
sult is a lower energy consumption associated with this
maneuver. Results show that for accomplishing this
maneuver, the energy consumption is about 10% less
for the trajectory optimization based controller when
compared to the classical approach. For simpler ma-
neuvers, like locomotion, results show less consump-
tion. Finally, it should be noted the high velocity of
the wheel. In fact, the reason lies on the small inertia
of this component. Since the trajectory starts with an
initial velocity of the wheel, the amount of initial an-
gular momentum is considerably small for the robot
mW = 0.08857 kg and Iwzz = 1.0334e− 5.

6.2.4 Nonlinear control approach

The trajectories obtained from the trajectory optimiza-
tion are used as input for a nonlinear controller [5] ap-
plied to the Moonhopper dynamics. These inputs are
presented in the form of attitude trajectories in terms
of quaternions and angular velocities.

Comparing these results with the open loop system
it is seen that they are both similar in all states. In
addition, the result for the energy consumed during the
maneuver is similar to the open loop controller. This
result leads to conclude that a combination of the two
concepts is possible. The robustness associated with
a closed loop controller gathered with the efficiency
of the pre planned trajectories present a appropriate
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Figure 16: Observation test: Nonlinear control+optim trajectories

Figure 17: Observation test: Nonlinear control + optim trajectories

solution for the attitude control problem of the robot.

7. Conclusions

As it was stated in the first chapter of this document,
the objective of this thesis is to study the solution for an
attitude controller based on the use of a DGVSCMG.
This was accomplishes by an initial characterization
of the model dynamics regarding the translation and
rotation motions. The resulting state space system
was used for developing the three controllers used in
this approach: the (PD+dynamic inversion), the tra-
jectory optimization based open loop and the nonlin-
ear Lyapunov controllers. By comparing the first two
controllers it was possible to conclude the advantages
regarding energy consumption of the trajectory based
controller. For that reason, the trajectories were used
to be followed by the nonlinear controller. The result
lead to the description of the final control, that com-
bines robustness and efficiency. It is important to note
that the applications of this results are greater than this
project. In fact, the both the model and the controllers
are valid for an body actuated by a DGVSCMG.
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8. Appenix
The details of the implementation are presented in this
section regarding the details of the robot structure and
the details of the controllers.

Inertia of the components:
Leggs - mL = 0.261, rL = [0, 0, 0.05]T

ILxx = 0.0013; ILyy = 9.8334×10−4; ILxy = 2.9174×
10−6; ILxz = −5.7147 × 10−5; ILzz = 9.0571 × 10−4;
ILyz = −2.9073× 10−6;

Body - mB = 0.82 rB = [−0.002, 0.005, 0.25]T

IBxx = 0.0017; IByy = 0.0165; IBxy = 9.7637×10−05;
IBxz = 7.0803 × 10−05; IBzz = 0.0028; IByz =
−2.9263× 10−05;

CMG Holder - mS = 0.20982 rS = [0, 0, 0.28]T

ISxx = 4.4590 × 10−4; ISyy = 4.4590 × 10−4 ISzz =
0.0011;

Outer Gimbal (G) - mG = 0.02207 rG = [0, 0, 0.345]T

IGxx = 4.2974×10−5 IGyy4.3426×10−5 IGzz8.5739×
10−5

Inner Gimbal (H) - mH = 0.020 rH = [0, 0, 0.345]T

IHxx = 1.1264 × 10−5 IHyy = 1.4680 × 10−6 IHzz =
1.1713× 10−5

Wheel (W) - mW = 0.00857 rW = [0, 0, 0.345]T

IWxx = 5.1682 × 10−6 IWyy5.1682 × 10−6 IWzz =
1.0334× 10−5

Regarding the controller, the gain that were used are
K = 0.5, P = diag([0.1 0.1 0.1]) Kψ̇ = 0.2 Kθ̇ = 0.2
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